Nonreflecting boundary condition for the Helmholtz equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution for the Helmholtz Equation with Mixed Boundary Condition

We consider the numerical solution for the Helmholtz equation in R with mixed boundary conditions. The solvability of this mixed boundary value problem is established by the boundary integral equation method. Based on the Green formula, we express the solution in terms of the boundary data. The key to the numerical realization of this method is the computation of weakly singular integrals. Nume...

متن کامل

Nonreflecting boundary condition for time-dependent multiple scattering

Starting from a high-order local nonreflecting boundary condition (NBC) for single scattering [25], we derive a local NBC for time-dependent multiple scattering problems, which is completely local both in space and time. To do so, we first develop an exterior evaluation formula for a purely outgoing wave field, given its values and those of certain auxiliary functions needed for the local NBC a...

متن کامل

Exact Nonreflecting Boundary Conditions for Exterior Wave Equation Problems

We consider the classical wave equation problem defined on the exterior of a bounded 2D space domain, possibly having far field sources. We consider this problem in the time domain, but also in the frequency domain. For its solution we propose to associate with it a boundary integral equation (BIE) defined on an artificial boundary surrounding the region of interest. This boundary condition is ...

متن کامل

Nonreflecting Boundary Conditions for theTime-Dependent Wave Equation

Nonreflecting Boundary Conditions for the Time-Dependent Wave Equation Bradley Alpert,∗,1 Leslie Greengard,†,2 and Thomas Hagstrom‡,3 ∗National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305; †Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012-1110; and ‡Department of Mathematics and Statistics, University o...

متن کامل

Solving wave equation with spectral methods and nonreflecting boundary conditions

A multidomain spectral method for solving wave equations is presented. This method relies on the expansion of functions on basis of spherical harmonics (Y m l (θ, φ)) for the angular dependence and of Chebyshev polynomials Tn(x) for the radial part. The spherical domains consist of shells surrounding a nucleus and cover the space up to a finite radius R at which boundary conditions are imposed....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2001

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(00)00275-3